
Accessibility

what it is about

context 2024 meeting

Accessibility — context 2024 meeting — What is accessibility

What is accessibility

Accessible pdf documents are a somewhat hot topic (for a while). Here are

some definitions:

• Greenwich: An accessible document is a document created to be as easily

readable by a low vision or non-sighted reader as a sighted reader.

• Harvard: Accessible documents are easier to understand and read for all

of your users, not just users with disabilities.

• University of California San Francisco: An accessible digital document is

well-structured, providing visual information in a non-visual format.

• Carlton: Accessible documents provide all text and other elements in an

accessible format, so that everyone can access the information in the doc

uments in some manner.

Accessibility — context 2024 meeting — What is accessibility

Such definitions are often followed by a similar list of suggestions, likely taken

from some (government) directive.

Note: This talk is a variant on the one done at BachoTEX 2024 but most ex

amples are the same!

Accessibility — context 2024 meeting — What is tagging

What is tagging

Tagging adds information to a pdf file so that:

• content can be extracted: apart from basic copying we're not interested

in this

• the text can reflow: use an other format is that is needed

• text can be spoken: to some extend that can be useful

But it comes a at cost:

• There are no real good free tools that handle it and validation, fixing, stan

dards with respect to pdf has always been a somewhat commercial enter

prise.

• The standard is a confusing, and interpretation gets debated: it looks like

little research went ahead of it.

Accessibility — context 2024 meeting — What is tagging

• So we can best just start from common sense and usage and also real

ize that in the end (future) demands are different anyway (compare book

printing).

• Nevertheless, we always end up with a bloated pdf file, which kind of con

tradicts other efforts to be lean and mean.

Accessibility — context 2024 meeting — And so . . .

And so . . .

• We basically end up implementing a feature for the sake of the feature that

might be useful in the future.

• And that in the end might not work out as intended as it might be subop

timal.

• And we can not check its usability so it's mostly about conformance and

playing safe.

• Also, we operate in a fast moving world when it comes to demands, pre

sentation models, usage and maybe coming technologies that might make

this obsolete.

Accessibility — context 2024 meeting — Examples

Examples

So what are the consequences of tagging for a pdf file? Let's have a look at

some simple examples.

untagged: test: 𝑥2 = 4 !

tagged: 𝑥2 = 4

tagged: test: 𝑥2 = 4

tagged: test: 𝑥2 = 4 !

Accessibility — context 2024 meeting — Examples

test: 𝑥2 = 4 !

stream

0 g 0 G

BT

/F1 10 Tf

1.195517 0 0 1.195517 3.941792 7.979264 Tm [<000100020003000100040005>] TJ

/F2 10 Tf

1.195517 0 0 1.195517 33.563574 7.979264 Tm [<0001>] TJ

0.836858 0 0 0.836858 40.398174 12.914036 Tm [<0002>] TJ

1.195517 0 0 1.195517 48.485127 7.979264 Tm [<0003>-278<0004>] TJ

ET

q

1 0 0 1 32.076871 2.455088 cm

[] 0 d 0 J 0.3985 w 0 0 36.486178 17.507437 re

S

Q

BT

/F1 10 Tf

1.195517 0 0 1.195517 72.741182 7.979264 Tm [<0006>] TJ

ET

0 g 0 G

endstream

Accessibility — context 2024 meeting — Examples

𝑥2 = 4

stream

0 g 0 G

/math <</MCID 1>> BDC

BT

/F1 10 Tf

1.195517 0 0 1.195517 3.941792 4.073226 Tm [<0001>] TJ

0.836858 0 0 0.836858 10.776392 9.007999 Tm [<0002>] TJ

1.195517 0 0 1.195517 18.863344 4.073226 Tm [<0003>-278<0004>] TJ

ET

EMC

0 g 0 G

endstream

Accessibility — context 2024 meeting — Examples

test: 𝑥2 = 4

stream

0 g 0 G

/documentpart <</MCID 1>> BDC

BT

/F1 10 Tf

1.195517 0 0 1.195517 3.941792 4.073226 Tm [<00010002000300010004>] TJ

ET

EMC

/math <</MCID 2>> BDC

BT

/F2 10 Tf

1.195517 0 0 1.195517 31.877621 4.073226 Tm [<0001>] TJ

0.836858 0 0 0.836858 38.712221 9.007999 Tm [<0002>] TJ

1.195517 0 0 1.195517 46.799174 4.073226 Tm [<0003>-278<0004>] TJ

ET

EMC

0 g 0 G

endstream

Accessibility — context 2024 meeting — Examples

test: 𝑥2 = 4 !

stream

0 g 0 G

/documentpart <</MCID 1>> BDC

BT

/F1 10 Tf

1.195517 0 0 1.195517 3.941792 7.979264 Tm [<00010002000300010004>] TJ

ET

EMC

/math <</MCID 2>> BDC

BT

/F2 10 Tf

1.195517 0 0 1.195517 33.563574 7.979264 Tm [<0001>] TJ

0.836858 0 0 0.836858 40.398174 12.914036 Tm [<0002>] TJ

1.195517 0 0 1.195517 48.485127 7.979264 Tm [<0003>-278<0004>] TJ

ET

EMC

/Artifact BMC

q

1 0 0 1 32.076871 2.455088 cm

[] 0 d 0 J 0.3985 w 0 0 36.486178 17.507437 re

S

Q

EMC

Accessibility — context 2024 meeting — Examples

/documentpart <</MCID 3>> BDC

BT

/F1 10 Tf

1.195517 0 0 1.195517 72.741182 7.979264 Tm [<0005>] TJ

ET

EMC

0 g 0 G

endstream

Accessibility — context 2024 meeting — Examples

We need a lot so tracing options to figure out possible issues, like:

backend > tags > begin page

backend > tags >

backend > tags > P 11 document>1 documentpart>1 navigationpage>1 : 1

backend > tags > T 2 document>1 documentpart>1 : test:

backend > tags > T 3 document>1 documentpart>1 math>1 : [2] = 4

backend > tags > -----

backend > tags > T 2 document>1 documentpart>1 : !

backend > tags >

backend > tags > end page

backend > tags >

backend > tags > 1 1 document>1 (content)

backend > tags > 2 1 document>1 documentpart>1 (content)

backend > tags > 3 1 document>1 documentpart>1 navigationpage>1 (content)

backend > tags > 4 1 document>1 documentpart>1 math>1 (content)

But we also have visual clues: tag labels, suspects, etc.

Accessibility — context 2024 meeting — Checking if we're okay

Checking if we're okay

• We can look at the file and if it opens in viewers we know that we didn't

mess up too badly. Looking at the pdf in an editor also works.

• The VeraPDF checker can be used but it's not always reliable. The order

of reported issues can differ per run and when you fixed the last issue,

suddenly a new one can be shown. (There are two parsers to choose from

and results can differ.)

• The PAC 2021 checker is more powerful but hasn't been updated to handle

pdf 2.0 (we can hack around that) an dit doesn't handle the role maps. But

it has a nice preview, shows a tag tree, etc. It's a bit slow in analyzing.

• We're only interested in the file being okay because there is not way to

know what is needed. We don't relate to pseudo html but users can do

that if they want. We don't want to cook up something sub-optimal.

Accessibility — context 2024 meeting — Checking if we're okay

• As long as we add meaningful tags, we can expect future document ana

lyzer to do a decent job, after all a ‘section’ says what it is.

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (1)

Structure, meaning and rolemaps (1)

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (1)

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (2)

Structure, meaning and rolemaps (2)

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (2)

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (3)

Structure, meaning and rolemaps (3)

Let's get an idea what we're dealing with. You can forget about it after seeing

it. The real content is this, when untagged we also have more efficient text

streams (here between <>):

stream

0 g 0 G

BT

/F1 10 Tf

0.996264 0 0 0.996264 549.598217 791.184973 Tm [<0001>] TJ

2.066252 0 0 2.066252 42.097049 741.603508 Tm

[<00020003000400050006000700080009000A000B000C>] TJ

/F2 10 Tf

0.996264 0 0 0.996264 42.097049 710.081548 Tm

[<000100020003000400050006000700080009000A0006000B0008>] TJ

0.996264 0 0 0.996264 548.192356 710.081548 Tm [<000C>] TJ

0.996264 0 0 0.996264 42.097049 689.160004 Tm

[<000D0006000E000400050006000700080009000A0006000B0008>] TJ

0.996264 0 0 0.996264 541.114406 689.160004 Tm [<000F00100010>] TJ

ET

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (3)

0 g 0 G

endstream

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (3)

When we tag we get entries like this in the page stream:

0 g 0 G

/Artifact BMC

BT

/F1 10 Tf

0.996264 0 0 0.996264 549.598217 791.184973 Tm [<0001>]

TJ

ET

EMC

/documentpart <</MCID 1>> BDC

BT

/F1 10 Tf

2.066252 0 0 2.066252 42.097049 741.603508 Tm

[<00020003000400050006000700080009000A000B000C>] TJ

ET

EMC

/link <</MCID 2>> BDC

EMC

/listcontent <</MCID 3>> BDC

BT

/F2 10 Tf

0.996264 0 0 0.996264 42.097049 710.081548 Tm

[<000100020003000400050006000700080009000A0006000B0008>]

TJ

ET

EMC

/listpage <</MCID 4>> BDC

BT

/F2 10 Tf

0.996264 0 0 0.996264 548.192356 710.081548 Tm [<000C>]

TJ

ET

EMC

/link <</MCID 5>> BDC

EMC

/listcontent <</MCID 6>> BDC

BT

/F2 10 Tf

0.996264 0 0 0.996264 42.097049 689.160004 Tm

[<000D0006000E000400050006000700080009000A0006000B0008>]

TJ

ET

EMC

/listpage <</MCID 7>> BDC

BT

/F2 10 Tf

0.996264 0 0 0.996264 541.114406 689.160004 Tm

[<000F00100010>] TJ

ET

EMC

0 g 0 G

endstream

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (3)

The /MCID 3 points into an array related to the page. Let's start at the top

parent (676):

676 0 obj

<<

/K 103359 0 R

/Namespaces [678 0 R 681 0 R 682 0 R

]

/ParentTree 677 0 R

/Type /StructTreeRoot

>>

endobj

The top level kids array (103359) is

103359 0 obj

[683 0 R]

endobj

The first entry (683) brings us to the document level

683 0 obj

<<

/K [684 0 R]

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (3)

/NS 678 0 R

/P 676 0 R

/Pg 1 0 R

/S /document

>>

endobj

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (3)

This element has only one kid (684) and sits in a name space (678). The parent

is (676) a way to get back, the page object is also references (1).

678 0 obj

<<

/LMTXNameSpace /context

/NS <feff.....>>

/RoleMapNS 103357 0 R

/Type /Namespace

>>

endobj

The name space points to a role map (103357, we have many objects here) so

we can use nice names as we like. We map most on the default NonStruct as

the regular subset makes little sense for us.

103357 0 obj

<<

/document [/Document 681 0 R]

/documentpart [/NonStruct 681 0 R]

/link [/Link 681 0 R]

/list [/NonStruct 681 0 R]

/listcontent [/NonStruct 681 0 R]

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (3)

/listitem [/NonStruct 681 0 R]

...

>>

endobj

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (3)

The mapped ones come from, a default set defines in (681):

681 0 obj

<<

/LMTXNameSpace /ua2

/NS <feff....>

/Type /Namespace

>>

endobj

Back to the mapping from elements on the page to real ones:

677 0 obj

<<

/Nums [

0 [685 0 R 684 0 R 688 0 R 689 0 R 690 0 R 692 0 R 693 0 R 694 0 R]

1 [704 0 R]

2 [....]

...

738 77343 0 R

739 77347 0 R

]

>>

endobj

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (3)

The second element on the page (684) is:

684 0 obj

<<

/K [685 0 R 1 686 0 R ...]

/NS 678 0 R

/P 683 0 R

/Pg 1 0 R

/S /documentpart

>>

endobj

The kids can be followed (from 676) to (684):

684 0 obj

<<

/K [685 0 R 1 686 0 R]

/NS 678 0 R

/P 683 0 R

/Pg 1 0 R

/S /documentpart

>>

endobj

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (3)

We go all the way down to:

686 0 obj

<< /K [687 0 R 691 0 R] /NS 678 0 R /P 684 0 R /Pg 1 0 R /S /list >>

endobj

687 0 obj

<< /K [688 0 R 689 0 R 690 0 R] /NS 678 0 R /P 686 0 R /Pg 1 0 R /S /listitem /T (chapter)

>>

endobj

688 0 obj

<< /K [2] /NS 678 0 R /P 687 0 R /Pg 1 0 R /S /link >>

endobj

689 0 obj

<< /K [3] /NS 678 0 R /P 687 0 R /Pg 1 0 R /S /listcontent >>

endobj

690 0 obj

<< /K [4] /NS 678 0 R /P 687 0 R /Pg 1 0 R /S /listpage >>

endobj

691 0 obj

<< /K [692 0 R 693 0 R 694 0 R] /NS 678 0 R /P 686 0 R /Pg 1 0 R /S /listitem /T (chapter)

>>

endobj

Accessibility — context 2024 meeting — Structure, meaning and rolemaps (3)

And so on. Keep in mind that in the page stream we see the endpoints and in

order to see where they come from one has to follow the chain back!

Accessibility — context 2024 meeting — Annoyances

Annoyances

• One has to mark everything. There is no default to artifact, which would

save a lot of (time and) file size as well as checking.

• Unicode lacks a code point that represents “no character, just ignore me

when copying or speaking” so one has to mark private slots as artifact

which is pain and dirties the backend.

• There are no code points that can help the speech engine, like pauses.

One can argue that this should not be in Unicode but we do have linguistic

and plenty odd symbols anyway.

• Often a nice looking and educational rich document has more than just

text, otherwise one could as well emulate a typewriter. It's also about

motivating and attraction. So there might be hard to catch artifacts.

Accessibility — context 2024 meeting — Annoyances

• Validating can be fragile, so one never knows for sure if what is okay or

bad today is bad or okay tomorrow. But we can decide to ignore some

warnings, especially when it hard to explain why it matters.

• There are some weird demands. Why should for instance a hyperlink mark

as artifact still resolve to a destination. Also, one assumes viewers to to

not adapt so there are redundant entries (for no real reason like /D and

/SD in destinations).

Accessibility — context 2024 meeting — Math

Math

• Math tagging is somewhat complex and often domain dependent the cur

rent state made us decide to just do what we think is best.

• As with math fonts it's not the TEX community that drives it (although of

course there has been early adoption and feedback, e.g. by Ross Moore).

We just have to follow the trends.

• We always had some kind of support for tagged math, not that there were

applications out there that we could check it with.

• At EuroBachoTEX 2017 there has been ambitious plans for future projects

with respect to tagged pdf (mentioning involvement of publishers and sub

stantial funding) but if that happens it is outside the ConTEXt community

scope.

Accessibility — context 2024 meeting — Math

• So . . . we just go our own way and ‘ritmik’ is what we came up with, which

actually is a side track of our math upgrading project.

• Sidenote: we do the same with bibliographies but that is much simpler:

serialize citations and embed bibTEX data.

Accessibility — context 2024 meeting — How

How

• We decided to go for what we call “meaningful math”: instead of relying on

unknown technology we make sure that when gets ‘read out’ reflects our

intentions: we provide serialized math in addition to embedded MathML.

• We have quite some structure in ConTEXt and math is no exception. When

we add features we normally also take care of tagging.

• We already had a way to extract MathML from formulas, but with (pre

sentation) MathML being unstable (dropping features, support comes and

goes) we have to adapt and anticipate the worst.

• We can now actually make use of the already present dictionary mecha

nisms and carry a bit more information around with symbols. This saves

some extra processing and serves serializing well.

Accessibility — context 2024 meeting — How

• We could actually remove some rendering related output (alignments us

ing tables) by more natural solutions.

• But . . . we need some information from users, like usage patterns, specific

support for ‘fields’, and translations.

• We don't want to adapt the engine because it's very macro package de

pendent and it's also more flexible.

Accessibility — context 2024 meeting — Tests

Tests

• A university math book of some 300 pages with 3500 formulas, and a lot

of (educational) structure.

• The upcoming math manual with many examples, fancy features, specific

control, symbols, different structures, etc.

• For performance tests we use relatively simple text only documents, like

the King James bible, novels from the Gutenberg project, etc.

• For meaningful math we have a (growing) document that shows examples

in various languages as well as MathML from ConTEXt input.

We can show some examples.

Accessibility — context 2024 meeting — Impact: King James Bible

Impact: King James Bible

from xml, two columns, using unifraktur:

fitclasses passes tagging pages runtime uncompressed runtime compressed

default no 670 14.2

default quality no 670 14.2

granular quality no 672 14.3 24.999 14.5 4.990

granular quality yes 672 17.5 39.660 18.4 7.134

Accessibility — context 2024 meeting — Impact: Math in ConTEXt

Impact: Math in ConTEXt

all bells and whistles, interactive, screen, menus, many math fonts:

tagging pages runtime uncompressed runtime compressed

no 433 15.8 43.467 15.9 7.204

yes 433 18.5 52.842 18.7 8.648

Accessibility — context 2024 meeting — Impact: Infinitesimalkalkyl

Impact: Infinitesimalkalkyl

a lot of structure, granular, passes, interactive, thousands of formulas, graph

ics:

synctex tagging pages runtime uncompressed runtime compressed

no no 292 9.3 3.645

yes no 292 9.7 17.379 9.8 3.645

yes yes 292 15.3 27.652 15.8 5.815

April 25, 2024

Dell 7220 Laptop: Intel(R) Xeon(R) CPU E3-1505M v6 @ 3.00GHz, 48.0 GB, 2TB Samsung Pro SSD

Windows 10 Pro for Workstations

LuaMetaTeX 2.11.02 / 20240425 (MingW64)

