
breaking LINES PAGES

Hans Hagen

Mikael Sundqvist

BachoT_EX 2024

OVERVIEW

- Breaking paragraphs into lines
 - How does T_EX break paragraphs into lines?
 - What are badness and demerits?
 - What parameters can we play with?
 - What is new?
- Pagebreaks
 - What are typical problems with pagebreaking?
 - What parameters can we play with?
 - What is new?

BREAKI NGPARA(H RAPHSINIT(DINES

HOW DOES TEX BUILD THE PARAGRAPH?

If we would like to improve, we better first understand what is going on. We start by looking at a paragraph from P.A.M. Dirac's article "Pretty Mathematics":

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

I can give a good example of this procedure. At one time in 1927, I was playing around with three 2 x 2 matrices whose squares are equal to unity and which applicaments with one another, Calling them σ_{00} σ_{02} σ_{02} σ_{02} I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_{1}p_{1}$ $\frac{1}{2}$ $\sigma_{2}p_{2}$ $\frac{1}{2}$ $\sigma_{3}p_{3}$ one obtained a quantity whose square was just p_{11}^{2} p_{21}^{2} p_{3}^{2} p_{3}^{2} This was an exciting result, but what use could one make of it?

THESE ARE THE VALUES TEX CONSIDERED

1	1	0	100010000	veryloose	glue			33	15	2935485	vervloose	disc		65	49	2566055	veryloose	glue		97	84	495168	loose	glue
	2	0	100010000	veryloose	glue			34	16	2413958	veryloose	disc		66	50		veryloose	_		98	85	440316	decent	disc
	3	0	100010000	veryloose	glue			35	16	315765	veryloose	glue		67	50	415095	loose	glue		99	87	357198	veryloose	glue
	4	0	100010000	veryloose	glue			36	17	493	decent	glue		68	51	348505	loose	glue		100	86	352562	loose	glue
	5	0	100010000	veryloose	glue		3	37	36	100010493	veryloose	glue		69	52	15918	loose	disc		101	88	4216	decent	glue
	6	0	100012500	veryloose	disc			38	19	100020269	decent	glue		70	52	3606	decent	disc	7	102	101	100014216	veryloose	glue
	7	0	100012500	veryloose	disc			39	36	100010493	veryloose	glue	5	71	70	100013606	veryloose	glue		103	91	69703121	veryloose	glue
	8	0	100010000	veryloose	glue			40	23	100020410	decent	glue		72	53	100023417	decent	glue		104	92	20692940	veryloose	glue
	9	0	100010000	veryloose	glue			41	36	100010493	veryloose	glue		73	70	100013606	veryloose	glue		105	92	9300795	veryloose	penalty
	10	0	100010000	veryloose	glue			42	36	100010493	veryloose	glue		74	55	100020511	decent	glue		106	93	5433478	veryloose	penalty
	11		100012500	•						100020269		glue		75		100013606	,	glue		107	94		veryloose	glue
	12	0	100012500	veryloose	disc			44	36	100010493				76	56	100023417		glue		108	95	2813509		glue
	13	0	100010000	•					30	75604724	-			77	60	81825417	-			109	96		veryloose	glue
	14	0		veryloose	•				32		veryloose			78	61	30939687	,	U		110	97	500497		glue
	15	0		veryloose	_				33		veryloose			79	63		veryloose			111	98		veryloose	
	16	0	20609		glue				33		veryloose			80	64		veryloose			112	98	463600		disc
	17	0		decent	glue				34		veryloose			81	64	3589303		glue		113	100	364226		glue
2	18		100010169	,	<u> </u>				35		veryloose	U		82	65		veryloose	<u> </u>			100	365162		disc
	19		100020100		glue				35	328901	U	glue		83	65	2579776		glue			101	25452		glue
	20		100010169	•	_				36		decent	glue		84	66	491804		disc			101		decent	glue
	21		100020169		glue					100013317	,			85	67	427695		disc	8	117		25814109	•	_
	22		100010169	•						100010817	•	_		86	68	349081		glue			105	20197396		
	23		100020121		glue					100020390		glue		87	69 70	20014		glue			105		veryloose	U
	24 25		100012669 100022669	, , , , , , , , , , , , , , , , , , , ,	disc disc					100013317 100010817	, , , , , , , , , , , , , , , , , , , ,			88 89	70	3775 16310	decent	glue glue		120	106 107		veryloose veryloose	U
	26		100022009							100010817	-		6	90		100013775		U			107		veryloose	-
	27		100010109	,	•					100033317	,	glue	O	91	78	69067912	,	U		122	100	3433033	veryloose	grue
	28		100010109	,	glue				45 45	76776408		U		92	79		veryloose		1	15 16	11 88 7	0 52 36 17		
	29		100020100						46	29851838	•	_		93	80		veryloose					0 52 36 17		
	30	14		veryloose	_				47		veryloose	_		94	81		veryloose	•				9 63 48 33 1	5	
	31	15		veryloose	•	v			48		veryloose	_		95	82		veryloose	•	1	., 10	, 1 0 2 1	0 00 10 00 1		
	32	15		veryloose		- 7			49		veryloose			96	84		veryloose							
	32	13	7113001	, cr yroosc				0-1	10	3310114	, cr yroosc	ande		30	0-1	303323	, cr yroosc	Bruc						

POSSIBLE BREAKPOINTS

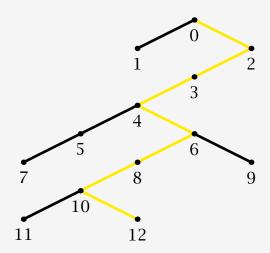
Traditional T_EX can break lines

- at glue (after words, not usually inside math),
- at kern followed by glue,
- at a discretionary (hyphenation),
- due to a penalty (also inside math).

I can give a good example of this procedure. At one time in 1927_9 was playing around with three $2 \le 12$ matrices whose squares are equal to unity and which application with one another. Calling them σ_{00} σ_{00} σ_{00} σ_{00} σ_{00} I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 \neq 1$ $\sigma_2 p_2 \neq 1$ $\sigma_3 p_9$ one obtained a quantity whose square was just $p_{11}^2 \neq 1$ $p_{21}^2 \neq 1$ This was an exciting result, but what use could one make of it?

COMPARISON OF TWO POSSIBILITIES

The selected one (116):


I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2 x x matrices whose squares are equal to unity and which apticommute with one another, Calling them σ_{00} σ_{00} σ_{00} σ_{00} σ_{00} and which apticommute with one another, Calling them σ_{00} σ_{00} σ_{00} σ_{00} σ_{00} σ_{00} and in play the interpolation of the procedure of the procedu

One of the abandoned ones (117):

I cap give a good example of this procedure. At one time in $1927_{0|2}$ was playing around with three $2 \le 12$ massirgices whose squares are equal to unity and which aptimate with one another. Calling them $\sigma_{00} = \sigma_{00} = \sigma$

TEX USUALLY DISCARDS MOST PERMITTED BREAKPOINTS

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?


```
[01] b=3
[02] b=8
[03] b=8
[04] b=7
```

```
[05] b=3
[06] b=11
```

[07] b=0

[08] b=0

```
20609 loose
                         glue
                  decent
                 decent glue
                 decent glue
                 loose
                 decent
                         disc
          20014 loose
                         glue
                  decent
                 tight
          25452 loose
          4316 decent glue
11 10 8 6 4 3 2
12 10 8 6 4 3 2
```

COMPARISON OF THE TWO POSSIBILITIES

The selected one (12):

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

The abandoned one (11):

BADNESS AND TOLERANCE

To each possible breakpoint (glue, disc, math, penalty) a *badness* value is calculated. If its value is less than the *(pre)tolerance*, the breakpoint is "feasible".

T_FX can do one, two (or three) runs on each paragraph:

- 1. Without hyphenation. Badness is compared to pretolerance (traditionally usually set to 100).
- 2. Possibly with hyphenation. Badness is compared to tolerance (traditionally set to 200).
- 3. If neither of the runs is successful and \emergencystretch is set to a positive value, a third run is done.

WHAT IS BADNESS?

Let ℓ be the desired length of the line. Let L be the total *natural* width of what we got so far (without stretch and shrink). Also, let Y > 0 be the total *stretchability* and Z > 0 be the total *shrinkability*. Define the *adjustment ratio* r as follows:

- If $L = \ell$ then set r = 0.
- If $L < \ell$ then set $r = (\ell L)/Y$.
- If $L > \ell$ then set $r = (\ell L)/Z$.

The *badness* β of the breakpoint is defined as

$$\beta = \begin{cases} +\infty, & r < -1; \\ \lfloor 100|r|^3 + 0.5 \rfloor, & \text{otherwise.} \end{cases}$$

BADNESS IN OUR TEST PARAGRAPH

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

Above we used pretolerance=100 and tolerance=200.

Did T_FX use the second run?

[01] b=3

[02] b=8

[03] b=8

[04] b=7

[05] b=3

[06] b=11

[07] b=0

[08] b=0

PROHIBIT HYPHENATION

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

Here we did \setupalign[nothyphenated].

[01] b=3

[02] b=8

[03] b=8

[04] b=1000000

[05] b=36

[06] b=66

[07] b=12

[08] b=0

PROHIBIT HYPHENATION, MORE TOLERANT

I can give a good example of this procedure. At one time in the procedure in the procedure

Here we did \setupalign[nothyphenated, verytolerant].

- [01] b=93
- [02] b=524
- [03] b=46
- [04] b=88
- [05] b=61
- [06] b=12
- [07] b=0
- [08] b=0

HOW TO CALCULATE DEMERITS?

I can give a good example of this procedure. At one time, |ip| 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result but what use could one make of it?

Let β be the badness, ℓ the line penalty (10), π the possible penalty, and α the additional demerits that correspond to a certain breakpoint. Then the demerits δ for that breakpoint is defined by

$$\delta = \begin{cases} (\ell + \beta)^2 + \pi^2 + \alpha, & \text{if } \pi \ge 0; \\ (\ell + \beta)^2 - \pi^2 + \alpha, & \text{if } -\infty < \pi < 0; \\ (\ell + \beta)^2 + \alpha, & \text{if } \pi = -\infty. \end{cases}$$

```
0 20609 loose
                      glue
   2 0 169 decent glue
  3 2 493 decent glue
           817 decent glue
      4 15918 loose
                      disc
          3606 decent disc
      5 20014 loose
                      glue
         3775 decent
                      glue
      6 16310 tight
                      glue
  10 8 4216 decent
                      glue
7 11 10 25452 loose
                      glue
  12 10 4316 decent glue
11 10 8 6 4 3 2
12 10 8 6 4 3 2
```

WHAT PENALTIES DO WE HAVE HERE?

We add \showmakeup[penalty] to see the penalties in action.

- I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one
- another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

We have here horizontal penalties

- hyphenpenalty set to 50 (not shown, used in calculations),
- mathematics penalties (later),

and vertical penalties (discussed later)

- brokenpenalty set to 100,
- clubpenalty set to 2000,
- widowpenalty set to 2000.

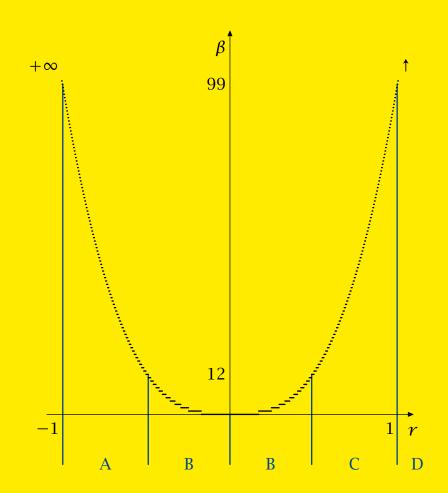
ONE EXAMPLE CALCULATION

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

We calculate the demerits of the linebreak after line 4.

The line penalty is $\ell=10$, the badness is $\beta=7$. The hyphenation penalty costs $\pi=50$. No additional demerits, so $\alpha=0$. Thus, the demerits δ is given by

$$\delta = (\ell + \beta)^2 + \pi^2 + \alpha = (10 + 7)^2 + 50^2 + 0 = 2789.$$


This is consistent with the table, since

$$817 + 2789 = 3606$$
.

Homework: What is the badness of breakpoint 5? (Answer: 41)

[01] b=3 [02] b=8 [03] b=8 [04] b=7 [05] b=3 [06] b=11 [07] b=0 [08] b=0

```
0 20609 loose
                       glue
           169 decent glue
            493 decent glue
            817
                decent glue
       4 15918 loose
                        disc
           3606 decent
                       disc
       5 20014 loose
                       glue
          3775 decent
                       glue
       6 16310 tight
                       glue
  10 8
         4216 decent
                       glue
7 11 10 25452 loose
                       glue
  12 10 4316 decent glue
11 10 8 6 4 3 2
12 10 8 6 4 3 2
```


ADJACENT CLASSES

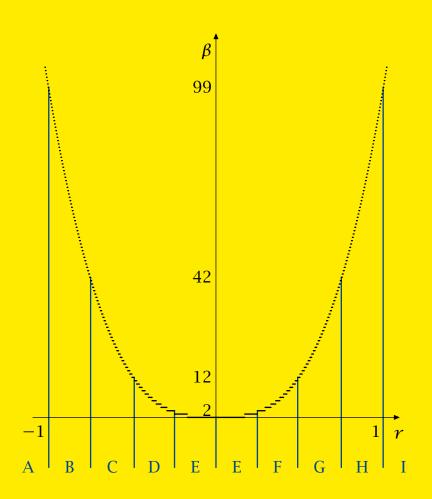
Every line gets a fitness class.

- A. Tight
- B. Decent
- C. Loose
- D. Very loose

If the current line has a different fitness class than the previous, \adjdemerits (usually set to 10000) is added to the demerits.

Granular is defined as

```
\fitnessdemerits 9
99 9000 0 % very loose
42 6000 500 % loose
12 4500 1000 % almost loose
2 3000 1000 % barely loose
0 1500 1500 % decent
2 1000 3000 % barely tight
12 1000 4500 % almost tight
42 500 6000 % tight
99 0 9000 % very tight
```


WHAT IS LOOSE?

```
We can define our own fitness classes.
```

The default setup is given by

```
\fitnessdemerits 5
  % very loose
  99 0 0
  % loose
  12 0 0
  % decent
   0 0 0 % adjdemerits
  % decent
  12 0 0
  % tight
  99 0 0
```

but it also uses \adjdemerits (10000).

ADJACENT CLASSES (GRANULAR)

- A. Very tight
- B. Tight
- C. Almost tight
- D. Barely tight
- E. Decent
- F. Barely loose
- **G.** Almost loose
- H. Loose
- I. Very loose

TRADITIONAL VS. GRANULAR

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

```
20609 loose
                                       glue
                                decent glue
                                decent glue
                                decent glue
[01] b=3
                        15918
                               loose
[02] b=8
                         3606
                               decent
                                       disc
                        20014 loose
                                       glue
Γ031 b=8
                                decent
                                       glue
[04] b=7
                        16310
                               tight
                                       glue
[05] b=3
                         4216
                               decent
                                       glue
                       25452 loose
[06] b=11
                12 10
                       4316 decent glue
[07] b=0
             11 10 8 6 4 3 2
              12 10 8 6 4 3 2
[08] b=0
```


WHICH ONE DO YOU LIKE BEST?

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

NARROWER, TRADITIONAL

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anapticed with one another. Calling them σ_1 , σ_2 σ_3 σ_3 σ_4 σ_3 σ_4 σ_3 σ_4 σ_3 σ_4 σ_4 σ_4 σ_5 σ

[01] b=77	1	1	0	17569	loose	glue
[02] L 10	2	2	1	26033	loose	math
[02] b=10		3	1	30469	decent	disc
[03] b=12	3	4	2	30002	loose	glue
[04] b=0		5	3	43453	decent	disc
		6	2	45422	tight	disc
[05] b=0		7	3	43069	decent	disc
[06] b=8	4	8	4	77631	veryloose	glue
		9	4	40227	decent	glue
[07] b=64		10	5	43553	decent	glue
[08] b=0		11	7	77018	tight	disc
F007 b 0	5	12	8	87775	decent	glue
[09] b=0		13	10	46153	decent	disc
		14	9	53456	tight	disc
		15	11	99618	decent	disc
	6	16	13	536477	decent	penalty
		17	15	111643	tight	glue
	7	18	16	551953	loose	glue
		19	17	629868	veryloose	penalty
		20	17	608204	tight	penalty
	8	21	18	595809	veryloose	glue
		22	18	562053	decent	glue
		23	19	640012	decent	glue
		24	20	618304	decent	glue
	21					
	22	18				
	23	19	17	15 11 7 3	1	

NARROWER, GRANULAR

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 σ_3 σ_3 σ_4 σ_3 σ_4 σ_4 σ_4 σ_5 σ_4 σ_5 σ_5 σ_5 σ_6 σ_6

	1	1	0	22569	loose	glue				
	2	2	1	31033	loose	math				
		3	1	32469	barelytight	disc				
	3	4	2	35002	loose	glue				
		5	3	50953	barelyloose	disc				
		6	2	57922	tight	disc				
		7	3	47569	decent	disc				
	4	8	4	87631	•	glue				
		9	4	42227	barelytight	glue				
		10	7	57298	almostloose	glue				
		11	5	53553	decent	glue				
		12	7	86518	tight	disc				
	5	13	8	91775	decent	glue				
		14	11	56153		disc				
		15	9	52956		disc				
		16	12	103118	decent	disc				
[01] b=77	6	17	15	549780	barelyloose	penalty				
[02] b=82		18	16	114143	almosttight	glue				
	7	19	17	568756	loose	glue				
[03] b=53		20	18	648368	veryloose	penalty				
[04] b=5		21	18	621204	tight	penalty				
[05] b=17	8	22	19	617612	•	glue				
[03] D=17		23	19	572856	decent	glue				
[06] b=8		24	20	652512		glue				
[07] b=64		25	21	625304	decent	glue				
	22			15 9 4 2 1						
[08] b=0	23 19 17 15 9 4 2 1									
[09] b=0	24	20	18 1	16 12 7 3 1	1					

GOING NARROWER ...

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

... AND NARROWER ...

... UNTIL WE GET TOO NARROW!

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

What can we do to avoid overful hboxes?

OR ARE WE? WE CAN TRY EMERGENCYSTRETCH!

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

Is the solution to always enable emergencystretch?

To get expansion, do

```
\definefontfeature
  [default]
  [default]
  [hz=quality]
```

before loading the font, and then

\setupalign[expansion]

WE CAN ALSO TRY EXPANSION

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

Is the solution to always enable expansion?

WE CAN USE MORE RUNS ON PARAGRAPHS

WE CAN USE MORE RUNS ON PARAGRAPHS

Enable with

\setupalignpass[bachotex]

WE CAN USE MORE RUNS ON PARAGRAPHS

```
\startsetups align:pass:bachotex
 \pretolerance 50
 \tolerance
                100
 \parpasses
   threshold
                        0.025pt
   tolerance
                         200
   extrahyphenpenalty
                         75
 next
   threshold
                        0.025pt
   tolerance
                         300
   extrahyphenpenalty
                         50
 next
   threshold
                        0.025pt
   tolerance
                         200
   extrahyphenpenalty
                         25
   adjustspacing
   adjustspacingstep
   adjustspacingshrink
                         20
   adjustspacingstretch
                         20
   emergencystretch
                         .25\bodyfontsize
 \relax
 \linebreakpasses\plusone
\stopsetups
```

EXPANSION WHEN GOING EVEN NARROWER

PARPASSES WHEN GOING EVEN NARROWER

ANOTHER EXAMPLE OF ALIGNPASSES

```
\startsetups align:pass:hca
   \pretolerance 100
   \tolerance
                 200
    \parpasses
       threshold
                            0.025pt
       tolerance
                            200
     next
       threshold
                            0.025pt
       tolerance
                            800
     next
       threshold
                            0.025pt
       tolerance
                            1600
     next
       threshold
                            0.025pt
       tolerance
                            1600
                            \bodyfontsize
       emergencystretch
   \relax
\stopsetups
```

HYPHENATION PENALTIES AND DEMERITS

We control hyphenations with the penalties \hyphenpenalty (50) and \exhyphenpenalty (50).

The \doublehyphendemerits (10000) is added in case of multiple consecutive hyphenated lines. A \finalhyphendemerits (5000) is inserted if the second-last line is hyphenated.

AVOIDING ORPHANS

- I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one
- another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?
- I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one
- another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

\orphanpenalty1000

AVOIDING ORPHANS

- I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one
- another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?
- I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one
- another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

\orphanpenalties 3 10000 5000 2500

PENALTY BEFORE AND AFTER MATH

- I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one
- another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?
- I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one
- another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

\preinlinepenalty 321 \postinlinepenalty 123

PENALTY BEFORE AND AFTER SHORT MATH

- In this problem we shall deal with lattice points inside a circle K, that is, with points enclosed by the circle K. We do not include here the lattice points on the circle itself. Prove that there exist circles containing 0 lattice points, 1 lattice point,
- 2 lattice points, etc. We can associate with every number n (natural or zero) a circle containing exactly n points.
- In this problem we shall deal with lattice points inside a circle K, that is, with points enclosed by the circle K. We do not include here the lattice points on the circle itself. Prove that there exist circles containing 0 lattice points, 1 lattice point, 2
- lattice points, etc. We can associate with every number n (natural or zero) a circle containing exactly n points.

\preshortinlinepenalty 333

There is also \postshortinlinepenalty, and one can as well try \shortinlinemaththreshold 1em.

PENALTIES AT BEGINNING AND END OF MATH

By default we get 700 after binary operators and 500 after relations.

$$1 + 2 + 3 + 4 + 5 + 6 = 6 + 5 + 4 + 3 + 2 + 1$$

No other penalties are added inside math.

$$1 + 2 + 3 + 4 + 5 + 6 = 6 + 5 + 4 + 3 + 2 + 1 = 20$$

PENALTIES MULTIPLIERS

$$(1+2+3+4+...+10)^2 = 1^3+2^3+3^3+4^3+...+10^3$$
\mathinlinepenaltyfactor 1500 % default
\mathdisplaypenaltyfactor1000 % default
\setmathpostpenalty \mathbinarycode 600
\setmathpostpenalty \mathrelationcode 400
\mathforwardpenalties 3 200 100 50
\mathbackwardpenalties 3 200 100 50
$$(1+2+3+4+...+10)^2 = 1^3+2^3+3^3+4^3+...+10^3$$

PENALTIES AFTER PUNCTUATION IN MATH?

In the bottom paragraph we inserted

\toddlerpenalty200

This adds a penalty of 200 after single character words, like 'I'.

WELCOME, TODDLER!

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

A FEW COMMENTS

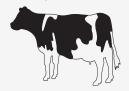
- We do not know how to "beat" the settings from plain T_EX.
- But a good setup can minimize the manual tweaks needed.
- A lot is penalty driven, even in displayed formulas.
- Finding the right values of penalties and demerits is not easy.
- Not much would have been done without the possibilities to trace and debug in ConT_EXt.

RIFLAIS

DO YOU SEE ANY PROBLEMS HERE?

1 A Chapter

1.1 A Section


Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt IgN significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly robust, the real test begins as people with many different viewpoints undertake their own experiments.

robust, the real test begins as people with many different viewpoints undertake their own experiments.

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

1.4 A Section

Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt

TEX significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

1.2 A Section

Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TgN significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly robust, the real test begins as people with many different viewpoints undertake their own experiments.

because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly robust, the real test begins as people with many different viewpoints undertake their own experiments.

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

1.5 A Section

Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

1.3 A Section

Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt Fig's significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly

The separation of any of these four components would have hurt IgN significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they wave important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly robust, the real test begins as people with many different viewpoints undertake their own experiments.

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

FLUSHING TO THE BOTTOM IS NOT THE SOLUTION

1 A Chapter

1.1 A Section

Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have burt TgN significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly robust, the real test begins as people with many different viewpoints undertake their own experiments.

robust, the real test begins as people with many different viewpoints undertake their own experiments.

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

1.4 A Section

Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TgX significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they were important. Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

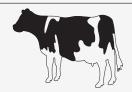
1.2 A Section

Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TgX significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly robust, the real test begins as people with many different viewpoints undertake their own experiments.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly robust, the real test begins as people with many different viewpoints



Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

1.5 A Section

Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt $T_{\underline{P}}X$ significantly. If I had not participated fully in all these activities,

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

1.3 A Section

Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they was invocation.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly

literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they

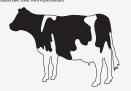
But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly robust, the real test begins as people with many different viewpoints undertake their own experiments.

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

\setupalign[line]

LIMITING THE STRETCH HELPS

1 A Chapter


1.1 A Section

Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt The significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly robust, the real test begins as people with many different viewpoints undertake their own experiments.

robust, the real test begins as people with many different viewpoints

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

1.4 A Section

Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have hart TgN significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they were imnortant.

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

1.2 A Section

Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual

The separation of any of these four components would have hurt TgN significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly robust, the real test begins as people with many different viewpoints undertake their own experiments.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly robust, the real test begins as people with many different viewpoints

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

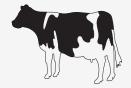
1.5 A Section

Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt $T_{\underline{P}}X$ significantly. If I had not participated fully in all these activities,

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

1.3 A Section


Thus, I came to the conclusion that the designer of a new system must not only be the implementer and first large-scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt IgN significantly. If I had not participated fully in all these activities, literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly

literally hundreds of improvements would never have been made, because I would never have thought of them or perceived why they

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial design is complete and fairly robust, the real test begins as people with many different viewpoints undertake their own experiments.

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

\setuplayout[limitstretch]

AVOIDING CLUBS

- I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one
- another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?
- I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one
- another. Calling them σ_{1} , σ_{2} , σ_{3} , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_{1}p_{1} + \sigma_{2}p_{2} + \sigma_{3}p_{3}$, one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

\clubpenalty 10000

AVOIDING CLUBS

- I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multi-
- another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?
- I can give a good example of this procedure. At one time, in
- 1927, I was playing around with three 2×2 matrices whose
- squares are equal to unity and which anticommute with one
- another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multi-
- plied them into the three components of a momentum so as
- to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$ one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

\clubpenalties 3 10000 5000 2500

AVOIDING WIDOWS

- I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one
- another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?
- I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one
- another. Calling them σ_{1} , σ_{2} , σ_{3} , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_{1}p_{1} + \sigma_{2}p_{2} + \sigma_{3}p_{3}$, one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

\widowpenalty 10000

AVOIDING WIDOWS

- I can give a good example of this procedure. At one time, in 1927, I was playing around with three 2×2 matrices whose squares are equal to unity and which anticommute with one
- another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multiplied them into the three components of a momentum so as to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$, one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?
- I can give a good example of this procedure. At one time, in
- 1927, I was playing around with three 2×2 matrices whose
- squares are equal to unity and which anticommute with one
- another. Calling them σ_1 , σ_2 , σ_3 , I noticed that if one multi-
- plied them into the three components of a momentum so as
- to form $\sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3$ one obtained a quantity whose
- square was just $p_1^2 + p_2^2 + p_3^2$. This was an exciting result, but what use could one make of it?

\widowpenalties 3 10000 5000 2500

THIS IS WHAT WE GET BY DEFAULT

The leap-frog

A Flea, a Grasshopper, and a Leap-frog once wanted to see which could jump highest; and they invited the whole world, and everybody else besides who chose to come to see the festival. Three famous jumpers were they, as everyone would say, when they all met together in the room.

"I will give my daughter to him who jumps highest," exclaimed the King; "for it is not so amusing where there is no prize to jump for."

The Flea was the first to step forward. He had exquisite manners, and bowed to the company on all sides; for he had noble blood, and was, moreover, accustomed to the society of man alone; and that makes a great difference.

Then came the Grasshopper. He was considerably heavier, but he was well-mannered, and wore a green uniform, which he had by right of birth; he said, moreover, that he belonged to a very ancient Egyptian family, and that in the house where he then was, he was thought much of. The fact was, he had been just brought out of the fields, and put in a pasteboard house, three stories high, all made of court-cards, with the colored side inwards; and doors and windows cut out of the body of the Queen of Hearts. "I sing so well," said he, "that sixteen native grasshopers who have chirped from infancy, and yet got no house built of cards to live in, grew thinner than they were before for sheer vexation when they heard me."

It was thus that the Flea and the Grasshopper gave an account of themselves, and thought they were quite good enough to marry a Princess.

The Leap-frog said nothing; but people gave it as their opinion, that he therefore thought the more; and when the housedog snuffed at him with his nose, he confessed the Leap-frog was of good family. The old councillor, who had had three orders given him to make him hold his tongue, asserted that the Leapfrog was a prophet; for that one could see on his back, if there would be a severe or mild winter, and that was what one could hot see even on the back of the man who writes the almanac.

"I say nothing, it is true," exclaimed the King; "but I have my own opinion, notwithstanding."

Now the trial was to take place. The Flea jumped so high that nobody could see where he went to; so they all asserted he had not jumped at all; and that was dishonorable.

The Grasshopper jumped only half as high; but he leaped into the King's face, who said that was ill-mannered.

The Leap-frog stood still for a long time lost in thought; it was believed at last he would not jump at all.

"I only hope he is not unwell," said the house-dog; when pop! he made a jump all on one side into the lap of the Princess who was sitting on a little golden stool close by.

Hereupon the King said, "There is nothing above my daughter; therefore to bound up to her is the highest jump that can be made; but for this, one must possess understanding, and the Leap-frog has shown that he has understanding. He is brave and intellectual."

And so he won the Princess.

"It's all the same to me," said the Flea. "She may have the old Leap-frog, for all I care. I jumped the highest; but in this world merit seldom meets its reward. A fine exterior is what people look at now-a-days."

The Flea then went into foreign service, where, it is said, he

The Grasshopper sat without on a green bank, and reflected on worldly things; and he said too, "Yes, a fine exterior is everything—a fine exterior is what people care about." And then he began chirping his peculiar melancholy song, from which we have taken this history; and which may, very possibly, be all untrue although it does stand here printed in black and white.

WHY DO WE GET THE UNEVEN PAGES?

The leap-frog...

Flea, a Grasshopper, and a Leap-frog once wanted to see which could jump highest; and they invited the whole world, and everybody else besides who chose to come to see the festival. Three famous jumpers were they, as everyone would say, when they all met together in the room.

"I will give my daughter to him who jumps highest," exclaimed the King; "for it is not so amusing where there is no prize to jump for."

The Flea was the first to step forward. He had exquisite manners, and bowed to the company on all sides; for he had noble blood, and was, moreover, accustomed to the society of man alone; and that makes a great difference.

Then came the Grasshopper. He was considerably heavier, but he was well-mannered, and wore a green uniform, which he had by right of birth; he said, moreover, that he belonged to a very ancient Egyptian family, and that in the house where he then was, he was thought much of. The fact was, he had been just brought out of the fields, and put in a pasteboard house, three stories high, all made of court-cards, with the colored side inwards; and doors and windows cut out of the body of the Queen of Hearts. "I sing so well," said he, "that sixteen native grasshopers who have chirped from infancy, and yet got no house built of cards to live in, grew thinner than they were before for sheer vexation when they heard me."

It was thus that the Flea and the Grasshopper gave an account of themselves, and thought they were quite good enough to marry a Princess.

The Leap-frog said nothing; but people gave it as their opinion, that he therefore thought the more; and when the housedog snuffed at him with his nose, he confessed the Leap-frog was of good family. The old councillor, who had had three orders given him to make him hold his tongue, asserted that the Leap-frog was a prophet; for that one could see on his back, if there would be a severe or mild winter, and that was what one could not see even on the back of the man who writes the almanac.

"I say nothing, it is true," exclaimed the King: "but I have

my own opinion, notwithstanding."

Now the trial was to take place. The Flea jumped so high

Now the trial was to take place. The Flea jumped so high that nobody could see where he went to; so they all asserted he had not jumped at all; and that was dishonorable.

The Grasshopper jumped only half as high; but he leaped into the King's face, who said that was ill-mannered.

The Leap-frog stood still for a long time lost in thought; it was believed at last he would not jump at all.

"I only hope he is not unwell," said the house-dog; when pop! he made a jump all on one side into the lap of the Princess who was sitting on a little golden stool close by.

Hereupon the King said, "There is nothing above my daughter; therefore to bound up to her is the highest jump that can be made; but for this, one must possess understanding, and the Leap-frog has shown that he has understanding. He is brave and intellectual."

And so he won the Princess.

"It's all the same to me," said the Flea. "She may have the old Leap-frog, for all I care. I jumped the highest; but in this warld merit seldom meets its reward. A fine exterior is what people look at now-a-days."

The Flea then went into foreign service, where, it is said, he

The Grasshopper sat without on a green bank, and reflected on worldly things; and he said too, "Yes, a fine exterior is everyhing-a fine exterior is what people care about." And then he began chirping his peculiar melancholy song, from which we have taken this history; and which may, very possibly, be all untrue, although it does stand here printed in black and white.

A CLOSER LOOK

wards; and doors and windows cut out of the body of the Queen of Hearts. "I sing so well," said he, "that sixteen native grasshoppers who have chirped from infancy, and yet got no house built of cards to live in, grew thinner than they were before for sheer vexation when they heard me."

Δ

Bottom

It was thus that the Flea and the Grasshopper gave an account of themselves, and thought they were quite good enough to marry a Princess.

The Leap-frog said nothing; but people gave it as their opinion, that he therefore thought the more; and when the housedog snuffed at him with his nose, he confessed the Leap-frog was

WE CAN FLUSH TO THE BOTTOM

The leap-frog

A Flea, a Grasshopper, and a Leap-frog once wanted to see which could jump highest; and they invited the whole world, and everybody else besides who chose to come to see the festival. Three famous jumpers were they, as everyone would say, when they all met together in the room.

"I will give my daughter to him who jumps highest," exclaimed the King; "for it is not so amusing where there is no prize to jump for."

The Flea was the first to step forward. He had exquisite manners, and bowed to the company on all sides; for he had noble blood, and was, moreover, accustomed to the society of man alone: and that makes a great difference.

Then came the Grasshopper. He was considerably heavier, but he was well-mannered, and wore a green uniform, which he had by right of birth; he said, moreover, that he belonged to a very ancient Egyptian family, and that in the house where he then was, he was thought much of. The fact was, he had been just brought out of the fields, and put in a pasteboard house, three stories high, all made of court-cards, with the colored side inwards; and doors and windows cut out of the body of the Queen of Hearts. "I sing so well," said he, "that sixteen native grasshoppers who have chirped from infancy, and yet got no house built of cards to live in, grew thinner than they were before for sheer vexation when they heard me."

7

It was thus that the Flea and the Grasshopper gave an account of themselves, and thought they were quite good enough to marry a Princess.

The Leap-frog said nothing; but people gave it as their opinion, that he therefore thought the more; and when the housedog snuffed at him with his nose, he confessed the Leap-frog was of good family. The old councillor, who had had three orders given him to make him hold his tongue, asserted that the Leapfrog was a prophet; for that one could see on his back, if there would be a severe or mild winter, and that was what one could hot see even on the back of the man who writes the almanac.

"I say nothing, it is true," exclaimed the King; "but I have my own opinion, notwithstanding."

Now the trial was to take place. The Flea jumped so high that nobody could see where he went to; so they all asserted he had not jumped at all; and that was dishonorable.

The Grasshopper jumped only half as high; but he leaped into the King's face, who said that was ill-mannered.

The Leap-frog stood still for a long time lost in thought; it was believed at last he would not jump at all.

"I only hope he is not unwell," said the house-dog; when pop! he made a jump all on one side into the lap of the Princess who was sitting on a little golden stool close by.

Hereupon the King said, "There is nothing above my daughter; therefore to bound up to her is the highest jump that can be made; but for this, one must possess understanding, and the Leap-frog has shown that he has understanding. He is brave and intellectual."

And so he won the Princess

"It's all the same to me," said the Flea. "She may have the

old Leap-frog, for all I care. I jumped the highest; but in this world merit seldom meets its reward. A fine exterior is what people look at now-a-days."

The Flea then went into foreign service, where, it is said, he

The Flea then went into foreign service, where, it is said, he was killed.

The Grasshopper sat without on a green bank, and reflected on worldly things; and he said too, "Yes, a fine exterior is everything—a fine exterior is what people care about." And then he be gan chirping his peculiar melancholy song, from which we have taken this history; and which may, very possibly, be all untrue although it does stand here printed in black and white.

BUT THAT DOES NOT ALWAYS WORK

1 The swineherd

There was once a poor Prince, who had a kingdom. His kingdom was very small, but still quite large enough to marry upon; and he wished to marry.

It was certainly rather cool of him to say to the Emperor's daughter, "Will you have me?" But so he did; for his name was renowned far and wide; and there were a hundred princesses who would have answered, "Yes!" and "Thank you kindly." We shall see what this princess said.

Listen!

It happened that where the Prince's father lay buried, there grew a rose tree—a most beautiful rose tree, which blossomed only once in every five years, and even then bore only one flower but that was a rose! It smelt so sweet that all cares and sorrows were forgotten by him who inhaled its fragrance.

And furthermore, the Prince had a nightingale, who could sing in such a manner that it seemed as though all sweet melodies dwelt in her little throat. So the Princess was to have the rose and the nightingale; and they were accordingly put into large silver caskets, and sent to her.

The Emperor had them brought into a large hall, where the Princess was playing at "Visiting," with the ladies of the court and when she saw the caskets with the presents, she clapped her hands for joy.

"Ah, if it were but a little pussy-cat!" said she; but the rose tree, with its beautiful rose came to view.

"Oh, how prettily it is made!" said all the court ladies.

"It is more than pretty," said the Emperor, "it is charming!"
But the Princess touched it, and was almost ready to cry.

"Fie, papa!" said she. "It is not made at all, it is natural!"

"Let us see what is in the other casket, before we get into a bad humor," said the Emperor. So the nightingale came forth and sang so delightfully that at first no one could say anything ill-humored of her.

"Superbe! Charmant!" exclaimed the ladies; for they all used to chatter French, each one worse than her neighbor.

"How much the bird reminds me of the musical box that be longed to our blessed Empress," said an old knight. "Oh yes These are the same tones, the same execution."

"Yes! yes!" said the Emperor, and he wept like a child at the membrance.

"I will still hope that it is not a real bird," said the Princess.
"Yes, it is a real bird," said those who had brought it. "Well
then let the bird fly," said the Princess; and she positively refused
to see the Prince.

However, he was not to be discouraged; he daubed his face over brown and black; pulled his cap over his ears, and knocked at the door.

"Good day to my lord, the Emperor!" said he. "Can I have employment at the palace?"

"Why, yes," said the Emperor. "I want some one to take care of the pigs, for we have a great many of them."

So the Prince was appointed "Imperial Swineherd." He had a dirty little room close by the pigsty; and there he sat the whole day, and worked. By the evening he had made a pretty little kitchen-pot. Little bells were hung all round it; and when the

WE CAN FLUSH TO THE BOTTOM, WITH DEPTH

4 The leap-frog

A Flea, a Grasshopper, and a Leap-frog once wanted to see which could jump highest; and they invited the whole world, and everybody else besides who chose to come to see the festival. Three famous jumpers were they, as everyone would say, when they all met together in the room.

"I will give my daughter to him who jumps highest," exclaimed the King; "for it is not so amusing where there is no prize to jump for."

The Flea was the first to step forward. He had exquisite manners, and bowed to the company on all sides; for he had noble blood, and was, moreover, accustomed to the society of man alone; and that makes a great difference.

Then came the Grasshopper. He was considerably heavier, but he was well-mannered, and wore a green uniform, which he had by right of birth; he said, moreover, that he belonged to a very ancient Egyptian family, and that in the house where he then was, he was thought much of. The fact was, he had been just brought out of the fields, and put in a pasteboard house, three stories high, all made of court-cards, with the colored side inwards; and doors and windows cut out of the body of the Queen of Hearts. "I sing so well," said he, "that sixteen native grasshoppers who have chirped from infancy, and yet got no house built of cards to live in, grew thinner than they were before for sheer exextion when they heard me."

10

It was thus that the Flea and the Grasshopper gave an account of themselves, and thought they were quite good enough to marry a Princess.

The Leap-frog said nothing; but people gave it as their opinion, that he therefore thought the more; and when the housedog snuffed at him with his nose, he confessed the Leap-frog was of good family. The old councillor, who had had three orders given him to make him hold his tongue, asserted that the Leapfrog was a prophet; for that one could see on his back, if there would be a severe or mild winter, and that was what one could not see even on the back of the man who writes the almanac.

"I say nothing, it is true," exclaimed the King; "but I have my own opinion, notwithstanding."

Now the trial was to take place. The Flea jumped so high that nobody could see where he went to; so they all asserted he had not jumped at all; and that was dishonorable.

The Grasshopper jumped only half as high; but he leaped into the King's face, who said that was ill-mannered.

The Leap-frog stood still for a long time lost in thought; it was believed at last he would not jump at all.

"I only hope he is not unwell," said the house-dog; when pop! he made a jump all on one side into the lap of the Princess who was sitting on a little golden stool close by.

Hereupon the King said, "There is nothing above my daughter; therefore to bound up to her is the highest jump that can be made; but for this, one must possess understanding, and the Leap-frog has shown that he has understanding. He is brave and intellectual."

And so he won the Princess.

"It's all the same to me," said the Flea. "She may have the

11

old Leap-frog, for all I care. I jumped the highest; but in this world merit seldom meets its reward. A fine exterior is what people look at now-a-days."

The Flea then went into foreign service, where, it is said, he was killed.

The Grasshopper sat without on a green bank, and reflected on worldly things; and he said too, "Yes, a fine exterior is everything-a fine exterior is what people care about." And then he began chirping his peculiar melancholy song, from which we have taken this history; and which may, very possibly, be all untrue although it does stand here printed in black and white.

WHAT ABOUT THIS?

5 The leap-frog

A Flea, a Grasshopper, and a Leap-frog once wanted to see which could jump highest; and they invited the whole world, and everybody else besides who chose to come to see the festival. Three famous jumpers were they, as everyone would say, when they all met together in the room.

"I will give my daughter to him who jumps highest," exclaimed the King; "for it is not so amusing where there is no prize to jump for."

The Flea was the first to step forward. He had exquisite manners, and bowed to the company on all sides; for he had noble blood, and was, moreover, accustomed to the society of man alone; and that makes a great difference.

Then came the Grasshopper. He was considerably heavier, but he was well-mannered, and wore a green uniform, which he had by right of birth; he said, moreover, that he belonged to a very ancient Egyptian family, and that in the house where he then was, he was thought much of. The fact was, he had been just brought out of the fields, and put in a pasteboard house, three stories high, all made of court-cards, with the colored side inwards; and doors and windows cut out of the body of the Queen of Hearts. "I sing so well," said he, "that sixteen native grasshoppers who have chirped from infancy, and yet got no house built of cards to live in, grew thinner than they were before for sheer vexation when they heard me."

It was thus that the Flea and the Grasshopper gave an account of themselves, and thought they were quite good enough to marry a Princess.

The Leap-frog said nothing; but people gave it as their opin ion, that he therefore thought the more; and when the housedog snuffed at him with his nose, he confessed the Leap-frog was of good family. The old councillor, who had had three orders given him to make him hold his tongue, asserted that the Leap-frog was a prophet; for that one could see on his back, if there would be a severe or mild winter, and that was what one could not see even on the back of the man who writes the almanac.

"I say nothing, it is true," exclaimed the King; "but I have my own opinion, notwithstanding."

Now the trial was to take place. The Flea jumped so high that nobody could see where he went to; so they all asserted he had not jumped at all; and that was dishonorable.

The Grasshopper jumped only half as high; but he leaped into the King's face, who said that was ill-mannered.

The Leap-frog stood still for a long time lost in thought; it was believed at last he would not jump at all.

"I only hope he is not unwell," said the house-dog; when pop! he made a jump all on one side into the lap of the Princess who was sitting on a little golden stool close by.

Hereupon the King said, "There is nothing above my daughter; therefore to bound up to her is the highest jump that can be made; but for this, one must possess understanding, and the Leap-frog has shown that he has understanding. He is brave and intellectual."

And so he won the Princess.

"It's all the same to me," said the Flea. "She may have the

old Leap-frog, for all I care. I jumped the highest; but in this world merit seldom meets its reward. A fine exterior is what people look at now-a-days."

The Flea then went into foreign service, where, it is said, he was killed.

The Grasshopper sat without on a green bank, and reflected on worldly things; and he said too, "Yes, a fine exterior is everything—a fine exterior is what people care about." And then he began chirping his peculiar melancholy song, from which we have taken this history; and which may, very possibly, be all untrue although it does stand here printed in black and white.

WE CAN USE VERTICAL EXPANSION

The leap-frog

A Flea, a Grasshopper, and a Leap-frog once wanted to see which could jump highest; and they invited the whole world, and everybody else besides who chose to come to see the festival Three famous jumpers were they, as everyone would say, when they all met together in the room.

"I will give my daughter to him who jumps highest," exclaimed the King; "for it is not so amusing where there is no prize to jump for."

The Flea was the first to step forward. He had exquisite manners, and bowed to the company on all sides; for he had noble blood, and was, moreover, accustomed to the society of man alone; and that makes a great difference.

Then came the Grasshopper. He was considerably heavier but he was well-mannered, and wore a green uniform, which he had by right of birth; he said, moreover, that he belonged to a very ancient Egyptian family, and that in the house where he then was, he was thought much of. The fact was, he had been just brought out of the fields, and put in a pasteboard house, three stories high, all made of court-cards, with the colored side in wards; and doors and windows cut out of the body of the Queen of Hearts. "I sing so well," said he, "that sixteen native grasshop pers who have chirped from infancy, and yet got no house built of cards to live in, grew thinner than they were before for sheer vexation when they heard me."

16

It was thus that the Flea and the Grasshopper gave an account of themselves, and thought they were quite good enough to marry a Princess.

The Leap-frog said nothing; but people gave it as their opin ion, that he therefore thought the more; and when the housedog snuffed at him with his nose, he confessed the Leap-frog was of good family. The old councillor, who had had three orders given him to make him hold his tongue, asserted that the Leap frog was a prophet; for that one could see on his back, if there would be a severe or mild winter, and that was what one could not see even on the back of the man who writes the almanac.

"I say nothing, it is true," exclaimed the King; "but I have my own opinion, notwithstanding."

Now the trial was to take place. The Flea jumped so high that nobody could see where he went to; so they all asserted he had not jumped at all; and that was dishonorable.

The Grasshopper jumped only half as high; but he leaped into the King's face, who said that was ill-mannered.

The Leap-frog stood still for a long time lost in thought; it was believed at last he would not jump at all.

"I only hope he is not unwell," said the house-dog; when pop! he made a jump all on one side into the lap of the Princess who was sitting on a little golden stool close by.

Hereupon the King said, "There is nothing above my daughter; therefore to bound up to her is the highest jump that can be made; but for this, one must possess understanding, and the Leap-frog has shown that he has understanding. He is brave and intellectual."

And so he won the Princess.

"It's all the same to me," said the Flea. "She may have the 17

old Leap-frog, for all I care. I jumped the highest; but in this world merit seldom meets its reward. A fine exterior is what people look at now-a-days." The Flea then went into foreign service, where, it is said, he

was killed.

The Grasshopper sat without on a green bank, and reflected on worldly things; and he said too, "Yes, a fine exterior is every thing-a fine exterior is what people care about." And then he began chirping his peculiar melancholy song, from which we have taken this history; and which may, very possibly, be all untrue although it does stand here printed in black and white.

A FEW MORE COMMENTS

- We do not claim that we can in general "beat" the settings from plain T_EX.
- Our feeling is that we need less manual tweaks.
- Repeated: We could not do this without the possibilities to trace and debug in ConT_EXt.