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□ We will talk about conditions and loops

□ This will be a fairly short because it is quite a simple

topic
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□ Conditions are always wrapped inside

if ..: .. fi:

□ Conditions can be inserted (almost) everywhere

□ Does not have to adhere to syntactical structure

□ Try to think of it as an in-line preprocessor
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The ⟨boolean variable⟩s true and false are primitives:

if true:

message "hi";

fi
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Boolean variables can be declared, of course:

boolean mystate;

mystate = true;

(they start off in the false state)
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And you can these them in if expressions:

if mystate:

message "hi";

fi
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You can use parentheses to create a nested expression:

if (mystate):

message "hi";

fi
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Or grouping:

if begingroup

mystate := false ;

mystate

endgroup:

message "hi";

fi
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You can test if a value is (un)known:

if known mystate:

message "known";

fi

if unknown mystate:

message "unknown";

fi

Boolean variables are unknown unless initialized, but

indeed known when they are false.
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You can test for the variable type:

if boolean mystate:

message "boolean";

fi

this works for all other variable types as well (if path

mystate: et cetera).



conditions 11 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

You can ask if something is a cyclic path:

if cycle fullcircle:

message "cyclic path";

fi

the test works for anything, but is only true for cyclic

paths.
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You can ask if a ⟨numeric primary⟩ is odd:

if odd 5.5:

message "odd";

fi

This test rounds up first, so −5.5 is odd and 5.5 is even.
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An ⟨boolean primary⟩ can be inverted:

if not known mystate:

message "known";

fi
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There are special if tests for objects inside pictures

if filled p:

message "filled";

fi
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filled true for filled paths inside pictures

stroked true for stroked paths inside pictures

clipped true for clip objects inside pictures

bounded true for setbounds objects inside pictures

textual true for typeset text inside pictures

actually tests the first item in the (sub)picture
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⟨boolean primary⟩ can be composed of ⟨boolean secondary⟩
using and:

boolean mycondition;

if mystate and unknown mycondition:

message "state true but condition unknown"

fi
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⟨boolean secondary⟩ can be composed of ⟨boolean tertiary⟩
using or:

if mystate or unknown mycondition:

message "state true or condition unknown"

fi
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And tertiaries can by built up from expressions:

if 5 < 6:

message "universe still sane";

fi

relation tests are: <, <=, >, >=, =, <>.
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There is also a possible else clause:

if 5 < 6:

message "universe still sane";

else:

message "the sky is falling";

fi
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And lastly, there is a chained if possible:

if 5 < 6:

message "universe still sane";

elseif mystate:

message "in limbo";

else:

message "the sky is falling";

fi

elseifs can be repeated.
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□ Loops start with a ⟨loop header⟩ and end with endfor

□ Loops can also be inserted (almost) everywhere

□ Does not have to adhere to syntactical structure

□ Try to think of it as an in-line preprocessor
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Loops can be made with an explicit expression list:

for a = "1","2","3":

message (a);

endfor
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Or using a numeric progression:

for a = 1 step 1 until 3:

message (decimal a);

endfor
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Or using a suffix list:

vardef mymessage @# =

message (decimal @#)

enddef;

forsuffixes a = 1, 2:

mymessage.a;

endfor
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Or even forever:

forever:

message ("eternal");

endfor
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Especially with that last option, it is also useful to be able

to abort a loop:

a = 0;

forever:

message ("eternal");

exitif a>10;

a := a + 1;

endfor
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Finally, there is a way to loop over a picture's content:

for a within currentpicture:

if stroked a: message "stroked"; fi

endfor
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That's all!


