
1 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

Metapost control structures

(conditions and loops)

Taco Hoekwater

September 16, 2022



2 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

□ We will talk about conditions and loops

□ This will be a fairly short because it is quite a simple

topic



conditions 3 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

□ Conditions are always wrapped inside

if ..: .. fi:

□ Conditions can be inserted (almost) everywhere

□ Does not have to adhere to syntactical structure

□ Try to think of it as an in-line preprocessor



conditions 4 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

The ⟨boolean variable⟩s true and false are primitives:

if true:

message "hi";

fi



conditions 5 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

Boolean variables can be declared, of course:

boolean mystate;

mystate = true;

(they start off in the false state)



conditions 6 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

And you can these them in if expressions:

if mystate:

message "hi";

fi



conditions 7 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

You can use parentheses to create a nested expression:

if (mystate):

message "hi";

fi



conditions 8 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

Or grouping:

if begingroup

mystate := false ;

mystate

endgroup:

message "hi";

fi



conditions 9 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

You can test if a value is (un)known:

if known mystate:

message "known";

fi

if unknown mystate:

message "unknown";

fi

Boolean variables are unknown unless initialized, but

indeed known when they are false.



conditions 10 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

You can test for the variable type:

if boolean mystate:

message "boolean";

fi

this works for all other variable types as well (if path

mystate: et cetera).



conditions 11 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

You can ask if something is a cyclic path:

if cycle fullcircle:

message "cyclic path";

fi

the test works for anything, but is only true for cyclic

paths.



conditions 12 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

You can ask if a ⟨numeric primary⟩ is odd:

if odd 5.5:

message "odd";

fi

This test rounds up first, so −5.5 is odd and 5.5 is even.



conditions 13 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

An ⟨boolean primary⟩ can be inverted:

if not known mystate:

message "known";

fi



conditions 14 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

There are special if tests for objects inside pictures

if filled p:

message "filled";

fi



conditions 15 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

filled true for filled paths inside pictures

stroked true for stroked paths inside pictures

clipped true for clip objects inside pictures

bounded true for setbounds objects inside pictures

textual true for typeset text inside pictures

actually tests the first item in the (sub)picture



conditions 16 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

⟨boolean primary⟩ can be composed of ⟨boolean secondary⟩
using and:

boolean mycondition;

if mystate and unknown mycondition:

message "state true but condition unknown"

fi



conditions 17 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

⟨boolean secondary⟩ can be composed of ⟨boolean tertiary⟩
using or:

if mystate or unknown mycondition:

message "state true or condition unknown"

fi



conditions 18 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

And tertiaries can by built up from expressions:

if 5 < 6:

message "universe still sane";

fi

relation tests are: <, <=, >, >=, =, <>.



conditions 19 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

There is also a possible else clause:

if 5 < 6:

message "universe still sane";

else:

message "the sky is falling";

fi



conditions 20 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

And lastly, there is a chained if possible:

if 5 < 6:

message "universe still sane";

elseif mystate:

message "in limbo";

else:

message "the sky is falling";

fi

elseifs can be repeated.



loops 21 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

□ Loops start with a ⟨loop header⟩ and end with endfor

□ Loops can also be inserted (almost) everywhere

□ Does not have to adhere to syntactical structure

□ Try to think of it as an in-line preprocessor



loops 22 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

Loops can be made with an explicit expression list:

for a = "1","2","3":

message (a);

endfor



loops 23 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

Or using a numeric progression:

for a = 1 step 1 until 3:

message (decimal a);

endfor



loops 24 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

Or using a suffix list:

vardef mymessage @# =

message (decimal @#)

enddef;

forsuffixes a = 1, 2:

mymessage.a;

endfor



loops 25 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

Or even forever:

forever:

message ("eternal");

endfor



loops 26 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

Especially with that last option, it is also useful to be able

to abort a loop:

a = 0;

forever:

message ("eternal");

exitif a>10;

a := a + 1;

endfor



loops 27 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

Finally, there is a way to loop over a picture's content:

for a within currentpicture:

if stroked a: message "stroked"; fi

endfor



28 / 28

16th ConTEXt Meeting: Dreifelden, Germany, September 12–18, 2022

That's all!


