
1 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

LPeg for TEXies

(continued from 2019)



LPeg for TEXies 2 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

What is LPeg?

From the LPEG website at http://www.inf.puc-rio.br/~roberto/lpeg/

comes this quick definition:

‘LPEG is a pattern-matching library for Lua, based on Parsing

Expression Grammars (PEGs).’

It is one of these sentences where you either have an ‘oh, really?’

moment or an ‘ah, right!’ moment depending on whether you

already know what a PEG actually is.



LPeg for TEXies 3 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

The important word is ‘Grammar’: LPEG works on the assumption

that whatever you are trying to parse makes sense grammatically,

for some to-be-defined grammar.

Creating a LPEG parser means building up a specialised grammar

that can interpret your input.

LPEG offers a mix of overloaded Lua operators and special functions

that allow you to break up the input into grammatically sensible

parts.



LPeg for TEXies 4 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

There are quite a number of functions and operators defined by the

LPEG module. Some are really basic, others are quite specialised.

All the functions in the library either operate on or create, a userdata

object.

We will stick to the simplest functions.

LPEG also uses operator overloading. These operate on userdata

objects as well, and sometimes automatically convert operands



LPeg for TEXies 5 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

Function Description
lpeg.P(n) Matches exactly n characters

lpeg.P(string) Matches string literally

lpeg.S(string) Matches any character in string (Set)

lpeg.R("xy") Matches any character between x and y (Range)



LPeg for TEXies 6 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

Operator Description
patt^n Matches at least n repetitions of patt

patt^-n Matches at most n repetitions of patt

patt1 * patt2 Matches patt1 followed by patt2

patt1 + patt2 Matches patt1 or patt2 (ordered choice)

patt1 - patt2 Matches patt1 if patt2 does not match

-patt Equivalent to ("" - patt)



LPeg for TEXies 7 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

Operator Description
lpeg.match(patt,input) match patt against some input

lpeg.C(patt) the match for patt plus all captures

made by patt

lpeg.Ct(patt) a table with all captures from patt

patt / function the returns of function applied to the

captures of patt



LPeg for TEXies, continued 8 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

Function Description
patt / string string, with %𝑛 replaced by captures

patt / number the 𝑛-th value captured by patt

patt / table table[c], where c is the (first) capture

of patt

#patt Matches if the look-ahead is patt

lpeg.Cf(patt, func) a folding of the captures from patt



LPeg for TEXies, continued 9 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

-- matches a numeral and captures its numerical value

number = lpeg.R"09"^1 / tonumber

-- matches a list of numbers, capturing their values

list = number * ("," * number)^0

-- auxiliary function to add two numbers

function add (acc, n) return acc + n end

sum = lpeg.Cf(list, add)

print(sum:match("10,30,43")) --> 83



LPeg for TEXies, continued 10 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

Function Description
lpeg.Carg(n) the value of the 𝑛-th extra argument to lpeg.match

lpeg.Cc(values) the given values

lpeg.Cp() the current position



Grammars 11 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

Function Description
lpeg.P(table) The table is interpreted as a grammar

lpeg.V(v) This operation creates a non-terminal for a grammar.



Grammars 12 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

With the use of Lua variables, it is possible to define patterns

incrementally, with each new pattern using previously defined ones.

However, this technique does not allow the definition of recursive

patterns. For recursive patterns, we need real grammars.



Grammars 13 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

LPeg represents grammars with tables, where each entry is a rule.

The call lpeg.V(v) creates a pattern that represents the nonterminal

(or variable) with index v in a grammar.

When a grammar (table argument) is ‘fixed’, the result is a pattern

that matches its initial rule.

The entry with index 1 in the table defines that initial rule.

If that entry is a string, it is assumed to be the name of the initial

rule. Otherwise, LPeg assumes that the entry 1 itself is the initial

rule.



Grammars 14 / 14

LPeg for TEXies, continued – Bassenge BE – September 24, 2021

The following grammar matches strings of a's and b's that have the

same number of a's and b's:

equalcount = lpeg.P{

"S"; -- initial rule name

S = "a" * lpeg.V"B" + "b" * lpeg.V"A" + "",

A = "a" * lpeg.V"S" + "b" * lpeg.V"A" * lpeg.V"A",

B = "b" * lpeg.V"S" + "a" * lpeg.V"B" * lpeg.V"B",

} * -1


