Metapost paths and pairs

(and pens and transforms)

Taco Hoekwater

September 21, 2021
\square We will discuss creating paths first
\square Followed by creating pairs
\square Then creating pens
After that, we will discuss the operations on those items, for instance by using transformations

Simple case:

```
path p;
p = (0,0)..(100,100);
```


Defining a path

From a path (sub)expression:

```
path p;
p = ((0,0)..(100,100));
```


Defining a path

From a set of points:

```
pair startp, endp;
startp = (0,0);
endp = (100,100);
path p;
p = startp..endp;
```

From a single point:

```
pair startp;
startp = (0,0);
path p;
p = startp;
```


Defining a path

From another path:

```
path p, q;
q = (0,0)..(100,100);
p = q;
```


Defining a path

From the reverse of another path:

```
path p, q;
q = (0,0)..(100,100);
p = reverse q;
```


Defining a path

From a part of another path:

```
path p, q;
q = (0,0)..(100,100);
p = subpath (0.25,0.5) of q;
```


Defining a path

From a pen:

```
path p;
p = makepath pencircle;
```


Defining a path

From a drawn path:

```
path p,q;
q = (0,0)..(100,100);
p= envelope pencircle of q;
```


Defining a path

\square For envelope, the pen needs to be polygonal.
\square To get the 'other' side of a cyclic path, reverse the path

Defining a path

Or any combination of all of those:

```
path p, q;
pair endp;
endp = (100,100);
q = (0,0)..(100,100);
p = (0,0) .. reverse (subpath (0.25,0.5) of q)
    .. makepath pencircle .. endp;
```


Simple case of direction:

```
path p;
p = (0,0)..(100,100);
```

With pairs as directions:
path p ;
pair up,right;
up $=(0,1)$;
right $=(1,0)$;
$p=(0,0)\{$ up $\} ..\{$ right $\}(100,100)$;

With explicit direction vectors:

```
path p;
p = (0,0){0,1}..{1,0}(100,100);
```

With curls as directions:

```
path p;
p = (0,0){curl 0}..{curl 1}(100,100);
```

A curl specification is a number from 0 to infinity. What it does:
\square it sets the amount of curliness at that point
\square if the requested amount of curl is high, it will adjust the curliness at adjacent points as well
\square its assumed default value at ending points is 1
\square an explicit curl makes that point an 'endpoint' (a.k.a. a corner)

Metapost pairs and paths - Bassenge BE - September 21, 2021

The last item on the previous slide is why this definition works:

```
def -- = {curl 1}..{curl 1} enddef;
```

curl demonstration now (does not fit on slide)

Handy to know:
\square explicit vectors are expressions, so you can do calculations
\square explicit incoming or outgoing curl and direction specifications migrate to the implicit side as well

Simple case of connector:

```
path p;
p = (0,0)..(100,100);
```

Using tension as connectors:

```
path p;
p = (0,0)..tension 2 ..(100,100);
```


Path directions and connectors

Using two tensions as connectors:

```
path p;
p = (0,0)..tension 2 and 1 ..(100,100);
```

A tension specification is a number from 0.75 to infinity. What it does:
\square it controls the amount of 'wideness' of the curve segment
\square its default value is 1
\square you can force a lower boundary with the atleast keyword

Path directions and connectors

Interesting predefined macros:

```
def --- = .. tension infinity .. enddef;
def ... = .. tension atleast 1 .. enddef;
```


Path directions and connectors

tension demonstration now (does not fit on slide)

Using a control point as connector:

```
path p;
p = (0,0)..controls (70,70) ..(100,100);
```


Path directions and connectors

Using two control points as connector:

```
path p;
p = (0,0)..controls (20,70) and (80,100)..(100,100);
```

Handy to know:
\square processed path segments always use control points
\square while METAPOST works out which control points to use, curl adjusts the vector angles and tension the vector length
\square using explicit control points will therefore overwrite any curl specification for the segment

Using concatenation as connector:

```
path p;
p = (0,0)..(50,50) & (50,50)..(100,100);
```

This only works if the left and right points are identical, and it is equivalent to

```
path p;
p = (0,0)..{curl 1}(50,50)..(100,100);
```

Creating a cyclic path:

```
path p;
p = (0,0)..(100,100) .. cycle;
```

The cycle is just a reference back to the first point of the path being created

Btw, because of the default curl 1, this produces a somewhat circular-looking path

So now you have a path. Here is some 'handy to know':
\square the length of a path is the number of explicit points, minus 1
\square the subpath operator adds points at the beginning and end of the subpath if needed
\square 'empty' curve segments still count, so

$$
p=(0,0) . .(0,0) \ldots(100,100) ;
$$

defines a path of length 2

Metapost pairs and paths - Bassenge BE - September 21, 2021

Defining a pair

Simple case:

```
pair a;
a = (0,0);
```


Defining a pair

From another pair:

```
pair a,b;
b = (0,0);
a = b;
```


Defining a pair

From an expression:

```
pair a;
a = ((0,0) + (100,100));
```


Defining a pair

From a path point:

```
path p;
pair a;
p = (0,0)..(100,100);
a = point 0.5 of p;
```


Defining a pair

From a path control point:

```
path p;
pair a;
p = (0,0)..(100,100);
a = precontrol 0.5 of p;
```

There is also postcontrol

Defining a pair

From a pen offset:

```
path p;
pair a;
p = (0,0)..(100,100);
a = penoffset (1,0.5) of pencircle;
```

The penoffset returns the point along the pen in which the pen travels in the direction given by the offset argument.
For angular pens, different directions may return the same result because corner points are considered to have all directions between incoming and outgoing

Defining a pair

From a path intersection:

```
path p,q;
pair a;
p = (0,0)..(100,100);
q = (0,100)..(100,0);
a = p intersectiontimes q;
```

The intersectiontimes returns two time values along the paths, encoded as a pair. If there are no intersections it returns (-1,-1)

If there are multiple intersections, it normally returns the first of those along the left-side path

However, if there are multiple intersections within a single curve segment (i.o.w 'between' knots), it will return the 'smallest' combination of times along both paths. (demo)

Metapost pairs and paths - Bassenge BE - September 21, 2021

Defining a pen

For pens, there are a lot less options

Metapost pairs and paths - Bassenge BE - September 21, 2021

Defining a pen

Simple case:
pen mypen;
mypen = pencircle;
pencircle is a built-in pen.

Defining a pen

Clearing a pen:

pen mypen;
mypen = nullpen;
nullpen is a built-in 'pen'.

Metapost pairs and paths - Bassenge BE - September 21, 2021

Defining a pen

From a path:
pen mypen;
path p;
$p=(0,0)--(100,100)--(200,0)--c y c l e ;$
mypen = makepen p;

Defining a pen

Handy to know:
\square makepen always converts . . to --
\square pens are always convex; makepen will silently enforce this by ignoring concaveness-inducing points
\square elliptical pens are created by transforming pencircle

Whenever you use a path, pair or pen in a METAPOST expression, you are allowed to transform it.
The following transformation options apply to all those object types (as well as pictures and transforms) I'll use pairs as examples to keep it simple

transformations

pair a;
a $=(100,100)$ rotated 90 ;
rotated works counter-clockwise around (0,0)

```
pair a;
a = (100,100) scaled 2;
```


transformations

```
pair a;
a = (100,100) shifted (50,50);
```


transformations

pair a;
a $=(100,100)$ slanted 10;

transformations

```
pair a;
transform t;
t := identity scaled 5;
a = (100,100) transformed t;
```

The transform identity is not actually a primitive, but it is defined a curious way in the plain METAPOST macros:

```
transform identity;
for z=origin,right,up:
    z transformed identity = z;
```

endfor

The three equations in the for loop together resolve all six parts of the transform object

```
pair a;
a = (100,100) xscaled 5;
```

```
pair a;
a = (100,100) yscaled 2;
```

```
pair a;
a = (100,10) zscaled (5,2);
```

zscaled mimics complex number multiplication
(100,10) zscaled (5,2) becomes
$(5 * 100-2 * 10,2 * 100+5 * 10)=(480,250)$
visually, zscaled (\mathbf{a}, \mathbf{b}) rotates and scales so that $(1,0)$ becomes (a,b)

Handy to know:
\square the right hand sides are numeric, pair, and transform primaries
\square you can chain transformers, they are processed left to right
\square there is no direct assignment syntax for trans form type definitions
\square do not forget to add grouping if you are mixing pair and path in the same expression

Now let's look at with other operations you can do on paths, pairs, pens and transforms.

Find the length of a path:

```
path p;
p = (0,0)..(100,100);
d = length p;
```

This returns the number of segments (one less than the number of control points)

Find the drawn length of a path:

```
path p;
p = (0,0)..(100,100);
d = arclength p;
```

This returns the length of the actual curve(s).

Find the drawn time of a path:

```
path p;
p = (0,0)..(100,100);
d = arctime 100 of p;
```

This returns the time along the path at which the arclength is the specified value

Test if a variable is a path:

```
path p;
p = (0,0)..(100,100);
if path p: ... fi
```

Single pairs fail this test, even though they are valid as path declarations

Test if a variable is a cyclic path:
path p ;
$\mathrm{p}=(0,0) . .(100,100)$;
if cycle p: ... fi
Only paths created with cycle are considered cyclic

Find the time at which a path moves in a certain direction:

```
path p;
p = (0,0)..(100,100)..(200,100);
d = directiontime (1,0) of p;
```

\square the pair argument is treated as a direction vector
\square if the path never travels in that direction, the return value is -1
\square if the path travels multiple times in that direction, the first time is returned
\square corners have all directions between incoming and outgoing angles

Find a bounding box point:

```
path p;
pair a;
p = (0,0)..(100,100)..(200,100);
a = ulcorner p;
```

Also defined are llcorner, lrcorner, and urcorner

other operations on pairs

Test if a variable is a pair:

```
pair a;
a = (100,100);
if pair a: ... fi
```


other operations on pairs

Get the x part:

```
pair a;
a = (10,10);
d = xpart a;
```

Get the y part:

```
pair a;
a = (10,10);
d = ypart a;
```


other operations on pairs

$71 / 90$
multiply or divide by a numeric:

```
pair a;
a = (100,100) * 5;
```


other operations on pairs

add or subtract another pair:

```
pair a,b;
b = (10,10);
a = (100,100) + b;
```


other operations on pairs

negation:

```
pair a;
a = -(100,100);
```

compare to another pair:

```
pair a,b;
b = (10,10);
a = (100,100);
if a > b: ... fi
```

Comparison of pairs initially compares the xpart value. If those are equal, next it checks the ypart.

other operations on pairs

mediate between two pairs:

```
pair a,b,c;
b = (10,10);
a = (100,100);
c = 0.5[a,b];
```

For mediation with negative values, keep in mind that unary minus binds less forcefully than mediation:
$\mathrm{c}=-1[\mathrm{a}, \mathrm{b}]$;
is $(-10,-10)$ because the mediation is processed first, whereas
$c=(-1)[a, b] ;$
is $(190,190)$ because $a-(b-a)=2 a-b$.

Metapost pairs and paths - Bassenge BE - September 21, 2021

other operations on pairs

Find the angle:

```
pair a;
a = (10,10);
d = angle a;
```


Test if a variable is a pen:

```
if pen pencircle:fi
```

Find a bounding box point:

```
pair a;
a = ulcorner pencircle;
```

Also defined are llcorner, lrcorner, and urcorner

Test if a variable is a transform:
if transform identity: ... fi

Metapost pairs and paths - Bassenge BE - September 21, 2021

Get the x shift part:
d = xpart identity;

Metapost pairs and paths - Bassenge BE - September 21, 2021

Get the y shift part:
d = ypart identity;

Metapost pairs and paths - Bassenge BE - September 21, 2021

Get the x scale part:
d = xxpart identity;

Metapost pairs and paths - Bassenge BE - September 21, 2021

Get the $x y$ multiplier part:
d = xypart identity;

Metapost pairs and paths - Bassenge BE - September 21, 2021

Get the $y x$ multiplier part:
d = yxpart identity;

Get the y scale part:
d = yypart identity;

Metapost pairs and paths - Bassenge BE - September 21, 2021

Compare to another transform:

```
transform T,V;
T = identity;
V = T scaled 2;
if T<V: ... fi
```

Comparison of transforms tests xpart, ypart, xxpart, xypart, yxpart, yypart consecutively.

These are the primitive operations.
Of course macro packages tend to define more:
\square operators
\square functions
\square predefined variables
\square et cetera.

Using pictures and the various other drawing primitives will be the topic of next year's talk

That's all!

(this slide only exists so I have exactly 1 slide per minute)

