
1 / 13

Metapost Luafication – Bassenge BE – September 21, 2021

Metapost Luafication

Taco Hoekwater

September 21, 2021



MetaPost Luafication 2 / 13

Metapost Luafication – Bassenge BE – September 21, 2021

This talk explains how to call lua from Metafun code.

Let's do a very simple example first …



MetaPost Luafication 3 / 13

Metapost Luafication – Bassenge BE – September 21, 2021

\startluacode

function MP.doit(a)

mp.print("unitsquare scaled " .. a)

end

\stopluacode

\startMPcode

fill lua.MP.doit(100);

\stopMPcode



MetaPost Luafication 4 / 13

Metapost Luafication – Bassenge BE – September 21, 2021



MetaPost Luafication 5 / 13

Metapost Luafication – Bassenge BE – September 21, 2021

□ you define a lua function in the MP table: MP.doit()

□ that function uses one of the mp.xxx() helpers to

produce output

□ the METAPOST macro lua converts its arguments into

a Lua call

□ and converts the output back into METAPOST code



MetaPost Luafication 6 / 13

Metapost Luafication – Bassenge BE – September 21, 2021

Now, let me try to explain what actually happens. First,

on the Lua side …



MetaPost Luafication 7 / 13

Metapost Luafication – Bassenge BE – September 21, 2021

□ The compiled MPLib library contains an extension

that adds a new METAPOST primitive operation with

the name runscript.

□ This new primitive accepts a string as input and (is

expected to) produce a string as output.

□ The output of runscript is then internally con

verted back into METAPOST code.

□ The script code to be run is set up during the cre

ation of the METAPOST library instance.



MetaPost Luafication 8 / 13

Metapost Luafication – Bassenge BE – September 21, 2021

Of course CONTEXT uses Lua for this extension, so it con

tains the following code:

local mpx, terminal = new_instance {

...

run_script = metapost.runscript,

...

}



MetaPost Luafication 9 / 13

Metapost Luafication – Bassenge BE – September 21, 2021

metapost.runscript is a Lua function that uses

loadstring to convert the input string into Lua code,

and it returns an internal buffer as the result of the call to

runscript.

That buffer is itself filled by the mp.xxx() helper func

tions.



MetaPost Luafication 10 / 13

Metapost Luafication – Bassenge BE – September 21, 2021

On the METAPOST side, it would not be very nice if you

had to code your Lua like this:

\startMPcode

runscript ("MP.doit(" & decimal 100 & ")");

\stopMPcode



MetaPost Luafication 11 / 13

Metapost Luafication – Bassenge BE – September 21, 2021

So, that is where the METAPOST lua macros comes in

handy.

This is an METAPOST vardef that converts its suffixes

and arguments into a Lua string for you, and then calls

runscript internally.



MetaPost Luafication 12 / 13

Metapost Luafication – Bassenge BE – September 21, 2021

That's it, really.

The Metafun manual has a list of those mp.xxx()

helper functions.

Or you can look at mlib-mpf yourself (there are mkiv

and lmtx versions).

When in doubt, you can always use mp.print("string")

Just make sure that the "string" is valid METAPOST.



MetaPost Luafication 13 / 13

Metapost Luafication – Bassenge BE – September 21, 2021

Handy to know:

□ The Metafun manual contains (much) more informa

tion than this talk

□ METAPOST's lua is defined in mp-luas (again in mkiv

and lmtx versions)

□ Your Lua functions can do just about anything be

cause the result is processed immediately.

□ And there is a tracker you can turn on: metapost.lua


