
8th ConTEXt Meeting, Bassenge, Belgium

Lua & TEX tokens

TacoHoekwater



8th ConTEXt Meeting, Bassenge, Belgium

LuaTEX has had a token Lua library since the early

beginnings, but it wasmore a proof of concept,

and it has never worked really well at that.

This talk presents a new, hopefully better interface

between Lua code and the TEX language parsing.



8th ConTEXt Meeting, Bassenge, Belgium

Old state

Togetanewtokenfromthe input, youcalledthe functiontoken.get_next()
or token.lookup():

local l = token.lookup("if")

Such ‘tokens’ were simple Lua tableswith three integer valueswithin:

l[1] The command code→ 120
l[2] The commandmodifier code→ 0
l[3] The control sequence id→ 65536



8th ConTEXt Meeting, Bassenge, Belgium

Use

To get something meaningful out of those numerical values, you had

to run another function. For example:

token.command_name(l) → "if_test"
token.csname_name(l) → "iftrue"
token.is_expandable(l) → true
token.is_activechar(l) → false
token.is_protected(l) → false



8th ConTEXt Meeting, Bassenge, Belgium

Other functions

token.create(<number> chr [,<number cmd])
token.csname_id(<string> csname)
token.command_id(<string> cmdname)
token.expand()



8th ConTEXt Meeting, Bassenge, Belgium

Planned new state

The functions get_next(), lookup(), and create() still exist, but

they return a userdata object that contains the actual TEX token.

Some of the helper functions go away, and instead that are accessible

fields in the token itself:

l.cmd
l.mod
l.cs
l.cmdname
l.csname
l.expandable
l.active
l.protected



8th ConTEXt Meeting, Bassenge, Belgium

New functions

Various new functions are for actual input parsing:

token.scan_keyword(<string> keyword)
token.scan_int()
token.scan_dimen()
token.scan_glue()
token.scan_toks()



8th ConTEXt Meeting, Bassenge, Belgium

To think about

• token.expand() behaviour

• \meaning and \def
• l.next or actual tables

• more scan_xxxx() functions

• input stack


