
Making TEX
support Unicode
The Quest for
the Holy Grail



The Holy Grail



An obvious statement

Since luaTEX, X ETEX, and other TEX engine can read UTF-8
files and handle 16-bit input correctly, they fully support

Unicode, right?

Really?



Really?



NO!
Unicode support is not equivalent to UTF-8 input; Unicode is

not a pile of characters without relations between each
others. And it needs more than 16 bits (21, approximately).

What do me miss, then?



Unicode defines a number of properties for each character,
and even processes to transforms character streams into

others.

Many of them are still missing from any TEX engines.



Combining characters

Informal definition: A combining character is a character
that puts an accent on the character it follows.

This is well known to TEX users, except that it follows the
character it applies to.



Combining demo



Canonical equivalence & normalization

We have several ways to input characters like ž: 〈ž〉 and
〈z, ˇ〉.

What is the difference, then?

Unicode says: none!

More precisely, it defines such sequences as canonically
equivalent, and says:

A process shall not assume that the interpretations of two
canonical-equivalent character sequences are distinct.



Unicode defines transformations of the character sequences
that preserve canonical equivalence. This is called

normalization.

There are four normalization forms; two are of interest here:
Normalization Form C (NFC) – maximum composition – and
Normalization Form D (NFD) – maximum decomposition.



Normalization demo



Trivia: Normalization is especially relevant for “European”
alphabetic scripts ... and for Korean.



Unicode also contains all sort of characters with special
properties: unbreakable space, zero-width-non-joiner, soft

hyphen, etc.



No math ...

Unfortunately, I have little knowledge about Unicode math
encoding, but this is also a very important aspect for TEX

especially in connexion with the Gyre math project.


